02072016Sun
Last updateFri, 05 Feb 2016 4pm

i

Is Your Company Ready for The New Reality?

Is Your Company Ready for The New Reality?

Since August, 2015, when VMA’s 201...

Offshore Oil Extraction and Transportation

Offshore Oil Extraction and Transportation

Offshore oil facilities come to the fore...

Back to Basics: Pressure Relief Devices, Part 2

Back to Basics: Pressure Relief Devices, Part 2

In Part 1 of Pressure Relief Devices, wh...

SubscribeWNT16

Read the latest digital edition

Subscribe to the digital edition

Subscribe to the print edition

Subscribe to the biweekly VALVE eNews

BUYERS GUIDE 300x220

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Advertisement
i

Industry Headlines

Watson Valve Announces Watson Valve Services, Australia

2 DAYS AGO

Watson Valve Services Inc. announces Watson Valve Services, Australia. Watson Valve will now have the ability to support the supply of its severe service valve products to non-U.S. domestic sites from its Australian based service agent, Process Plants International (PPi) under the name, Watson Valve...

Readmore

Velan Makes Changes to Management Team

2 DAYS AGO

Velan recently announced that Executive Vice-President (EVP) Ivan Velan has decided to reduce his work scope, but will remain with the company as Special Advisor to the President, Yves Leduc. Ivan will lead key projects and continue to support the management team.

Martin Allen joined Velan’s ...

Readmore

U.S. Oil Inventories Now at Record High

2 DAYS AGO

Several factors have played a part in pushing U.S. crude oil prices below $30 per barrel, including high inventory levels of crude oil, uncertainty about global economic growth, volatility in equity and non-energy commodity markets, and the potential for additional crude oil supply to enter the mark...

Readmore

FERC Approves $3.2B Sabal Trail Pipeline Project

2 DAYS AGO

Sabal Trail Transmission, LLC, a joint venture of Spectra Energy Partners, LP, NextEra Energy, Inc. and Duke Energy, received a certificate of public convenience and necessity from the Federal Energy Regulatory Commission (FERC) to construct and operate the Sabal Trail interstate natural gas pipelin...

Readmore

U.S. Adds 151,000 Jobs, Unemployment Rate Down to 4.9%

1 DAY AGO

Total nonfarm payroll employment rose by 151,000 in January, and the unemployment rate dropped 0.1% to 4.9%, the lowest since Feb. 2008. Job gains occurred in several industries, led by retail trade, food services and drinking places, health care and manufacturing. Employment declined in private edu...

Readmore

U.S. Factory Orders Down 2.9% in December

2 DAYS AGO

New orders for manufactured goods in December, down four of the last five months, decreased $13.5 billion or 2.9% to $456.5 billion, the U.S. Census Bureau reported today. This followed a 0.7% November decrease. Overall, December orders were 6.6% below where they were one year ago.

Machinery orders...

Readmore

Solar-powered Valve Actuation: An Update

vmspr12_solar_actuators

The use of solar power in industrial and municipal valve actuator applications goes back several decades; however, technological advances in solar power efficiency and storage mean that today, it has become a practical, dependable alternative for many isolated locations.

In the early days, solar power was used in noncritical applications that required low power consumption, primarily to supply monitoring of valve-related and process data at remote locations. As solar power technology evolved, applications expanded along with the sophistication of the technology.

Today, the most extensive use of solar power in valve actuator applications is found in remote parts of the world that have vast stretches of jungle, desert or mountainous terrain—environments without reliable utility power. For example, South and Latin American oil-producing nations pioneered extensive use of solar and telemetry mostly for use on critical oil and gas pipelines.

In the U.S., fewer off-grid applications present themselves; however, recently some energy pipelines and governmental water agencies have come to rely on solar even for critical applications. The decision to go with solar in these cases is usually based on the comparative costs of bringing the grid to the job site or keeping the site off the grid. Furthermore, the current boom in unconventional extraction methods for oil and natural gas is driving more interest in solar power for valve-actuator applications.


ENERGY CONSUMPTION

A key factor of whether or not to consider solar power for an application relates to available energy and consumption. Two examples would be a 36-inch valve or gate operating at 1,000 psi on a crude oil pipeline and a 96-inch sluice gate in 25 feet of head water at a remote dam site. The two would require about the same force and amount of energy to operate. In both these cases, users would find bringing utility power to the sites cost prohibitive, which triggers the process to consider solar power.

In these scenarios, the pipeline company needs to be able to close the valve in an emergency in response to environmental and safety concerns. The water utility needs to maintain an appropriate level in its reservoir through the winter, which means changing the outlet gate position as the lake level rises or falls. Both applications need to sense process conditions, transmit information, move a load and do it all off grid. Solar power can be more cost effective in such cases and requires less maintenance than gas or diesel generation systems if the loads can be managed.


vmspr12_andes_solar_actuatorHigh in the Andes Mountains between Argentina and Chile, 14 valve sites are connected by fiber optic cable to the pipeline command center. Solar panels provide power for the station during the summer months and a turbine wind generator takes over during the winter. A control building houses the communication equipment and the hydraulic power unit (lower right). The 16-inch pipeline is buried, but the hydraulic actuator mounted on the valve extension can be seen above grade (lower left).POWER SUPPLY

One of the ways technology has improved in the solar industry is that, in the last 10 years, panels have become much more efficient and reliable. A case in point is an energy company in Wyoming that had a solar panel riddled with bullet holes. In earlier times, that panel would not have functioned. Yet, in this case, they did not need to replace the panel until a significant portion of its surface area was damaged because of the latest generation of solar panels, which employs self-healing technology.

Today, battery racks can be as simple as a pair of marine-grade gel cells wired to deliver 24 volts direct current (VDC), or racks of batteries wired to deliver 48, 96 or 110 VDC. A typical electric motor operator would reach the limits of battery storage and energy transfer capacity very quickly. But if speed is not an issue, then trading horsepower for gear reduction would allow some very large valves and gates to be operated this way.

Most importantly today, however, is that users don’t have to be in the sun-belt to make solar work. Canada has many successful remote solar sites.


HIGH SPEED AND FORCE, CRITICAL CONTROL

High speed, high force and critical control, which are all necessary requirements for dependable valve actuator operation, can be accomplished with an appropriate hydraulic operating system. By combining solar electric battery storage with hydraulic accumulator storage, very high operating forces and flexible speed control are possible. Full pipeline and station diagnostics are available as well.

Only a few years ago, communication options in remote areas were very limited. Satellite receivers were expensive and required a license; cellular towers had not yet spanned the country; and data capacity was limited. Radio systems were complicated and required intensive maintenance. Today, however, wireless technology covers even the most remote parts of the country, and most new pipelines are built with fiber-optics for supervisory control and data acquisition (SCADA) along their full length. This allows the same level of data acquisition and control at remote sites as in a plant connected to the grid, including both power and control redundancies for critical operations.

In addition, significant improvements in energy efficiency of instrumentation have been made, so continuous load on the battery system is minimized.

Advertisement

  • Latest Post

  • Popular

  • Links

  • Events