02202017Mon
Last updateThu, 16 Feb 2017 9pm

i

Improving Valve Sealing Performance and Reliability

Improving Valve Sealing Performance and Reliability

From time to time, we are re-posting wel...

A Primer on Fugitive Emissions

A Primer on Fugitive Emissions

Fourscore and seven years ago, no one ha...

The State of Industrial Distribution in 2017

The State of Industrial Distribution in 2017

Key trends for the industrial distributi...

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

ITT Reports 2016 Fourth-Quarter, Full-Year Results

Thursday, 16 February 2017  |  Chris Guy

On a GAAP basis, ITT Corporation delivered revenue of $588 million in the fourth quarter of 2016, reflecting a 12% decline that included a 2% negative...

Readmore

Loading...

Industry Headlines

ITT Reports 2016 Fourth-Quarter, Full-Year Results

3 DAYS AGO

On a GAAP basis, ITT Corporation delivered revenue of $588 million in the fourth quarter of 2016, reflecting a 12% decline that included a 2% negative impact from foreign exchange. GAAP segment operating income decreased 12% .

In the Industrial Process segment, total revenue decreased 29% to $212 milli...

Readmore

Delta Centrifugal Rejoins VMA

4 DAYS AGO

This week VMA welcomed back associate member Delta Centrifugal Corporation of Temple, TX after a one year absence from the association.

Delta produces custom-made castings. Delta’s operations include Texas Stainless, Inc. Texas Stainless is a metals distributor and sells castings produced by Delt...

Readmore

How New U.S. Policies Will Affect the Chemical Industry

5 DAYS AGO

“In 2017, barring a recession in the U.S. and Europe or a slowdown in China, Moody’s Investor Service expects EBITDA in the chemicals industry to slip by 1 or 2% year-over-year.”

A new report from PwC predicts that the Trump administration “is likely to embrace policies that are...

Readmore

$2.2 Billion Investment Approved for Mad Dog Phase 2 Project

6 DAYS AGO

BHP Billiton has approved expenditure of $2.2 billion for its share of the development of the Mad Dog Phase 2 project in the Gulf of Mexico. During the fourth quarter of 2016, BP, which holds a 60.5% participating interest, sanctioned the Mad Dog Phase 2 project.

Mad Dog Phase 2, located in the Green...

Readmore

Philly Fed Manufacturing Conditions Continued to Improve in February

4 DAYS AGO

The index for current manufacturing activity in eastern Pennsylvania, southern New Jersey and Delaware increased from a reading of 23.6 in January to 43.3 this month and has remained positive for seven consecutive months. The share of firms reporting growth continues to increase: More than 48% of the ...

Readmore

Industrial Production Down 0.3% in January

5 DAYS AGO

Industrial production decreased 0.3% in January following a 0.6% increase in December. In January, manufacturing output moved up 0.2%, and mining output jumped 2.8%. The index for utilities fell 5.7%, largely because unseasonably warm weather reduced the demand for heating. At 104.6% of its 2012 avera...

Readmore

Common Bellows Failures and Suggestions for Mitigation

vmwnt12_MR_Fig1Figure 1. Galling on the stem due to an oversized valve or operating the PRV too close to set pressure.

While it is an extremely rare event, bellows can and do fail. But bellows failures are often wrongly attributed to the quality of the valve or the bellows while in reality, a more likely scenario is operating conditions or an improperly specified valve that contributed to the failure. Still, whenever a failure occurs, analysis of what happened and why is critical.


THE USE OF BELLOWS

A spring-loaded pressure relief valve (PRV) is a device that reacts based on the amount of static pressure force pushing up on the disc. In normal processing conditions, the valve will remain shut because the upward force on the disc is less than the closing spring force. When the force from the process fluid pushing up and the force of the spring pushing down are at equilibrium, the disc of the valve will begin to lift from the nozzle, and the valve will begin to “simmer.” At this point, a slight increase in process pressure will cause that valve to “pop” open (its set point), thereby relieving the overpressure.

vmwnt12_MR_Fig2Figure 2. Bellows rupture likely because of excessive backpressure.A bellows is typically specified for applications when a spring-loaded PRV will experience backpressure (which can impact the valve’s ability to open at the correct set pressure) or when the internal components of the valve must be isolated from the processing fluid. When selecting the bellows material, consideration of the process material discharging into a common header must be made.

While it is possible for a bellows to fail because of an imperfection in fabrication, failure more commonly can be attributed to the wrong valves being used or operating conditions. Quality control during PRV assembly can prevent a customer from experiencing this type of failure.

Listed below are four scenarios that are common reasons a bellows might fail. Each assumes that a thorough review of the engineering sizing and specifications for a given PRV has been completed since these calculations will aid in diagnosing the problem.


EXCESSIVE BACKPRESSURE

One clue that indicates a valve has been exposed to excessive backpressure is when the bellows has been crushed. There are two types of backpressure in process systems: constant and variable. Variable can be further divided into two subgroups: superimposed and built-up.

Built-up backpressure is defined as the pressure at the outlet of the PRV based on the discharge piping configuration, i.e., pressure that occurs only after the valve has opened. For applications where the flow is compressible, built-up backpressure is based on the piping hydraulics at the accumulation pressure using the maximum actual capacity for the PRV. All too often engineers perform this calculation at the required capacity for the given scenario, not at the device’s actual capacity.

When a bellows failure can be attributed to excessive built-up backpressure, the following options will ­mitigate the problem:

  • Use a bellows with a higher pressure limit.
  • Use a pilot valve balanced against backpressure.
  • Modify the outlet piping by ­making it larger or shortening the length of pipe, thereby ­reducing the effects of built-up backpressure.


OVERSIZED VALVE

While most PRVs are protecting equipment for more than one relief event, the size of the valve is based on the scenario requiring the greatest relieving capacity. An example would be when a PRV is sized for both fire and blocked outlet scenarios. The fire sizing requires significantly greater orifice area than the blocked outlet sizing. However, since the blocked outlet scenario is more common and more likely to occur, then the PRV will be potentially starved for capacity, causing the valve to “chatter” (rapidly opening and closing). Valve chatter, as well as flow instability, could inevitably cause valve damage such as premature fatigue failure of the bellows, as well as galling of guiding surfaces. In our experience, a PRV should not be specified that has an actual orifice area more than 3 to 5 times larger than the required area.

Mitigation strategies for failure in this scenario include:

  • Install multiple PRVs and stagger the set pressure for each of the scenarios. Ensure the small valve is properly sized based on the lowest required capacity relief scenario.
  • Install a modulating pilot-operated relief valve.

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association