12132017Wed
Last updateTue, 12 Dec 2017 7pm

i

Process Instrumentation in Oil and Gas

Process Instrumentation in Oil and Gas

Process instrumentation is an integral p...

Check Valves in LNG Cryogenic Service

Check Valves in LNG Cryogenic Service

Because natural gas is currently conside...

Will Smart Machines Obsolete Human Resources?

Will Smart Machines Obsolete Human Resources?

Is artificial intelligence (AI) going to...

Is Valve Live Loading an Option?

Is Valve Live Loading an Option?

Valves leak. There’s no getting ar...

Subscribe SUM17

FREE SUBSCRIPTION*

• Print magazine
Digital magazine
• VALVE eNews
Read the latest issue

*to qualified valve professionals in the U.S./Canada

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

U.S. LNG Exports Increased as New Facilities Come Online

Tuesday, 12 December 2017  |  Chris Guy

In August 2017, total U.S. natural gas liquefaction capacity in the lower 48 states increased to 2.8 billion cubic feet per day (Bcf/d) following the ...

Readmore

Loading...
Advertisement
i

Web Only

Construction and Mining: Is 2018 The Year for Growth?

Construction and Mining: Is 2018 The Year for Growth?

Tuesday, 12 December 2017  |  Kate Kunkel

While there is a degree of optimism in the mining industry that hasn’t been seen for some years, much uncertainty still exists in this sector. A...

Readmore

Loading...

Industry Headlines

CIRCOR Completes Acquisition of Colfax Fluid Handling

12 HOURS AGO

CIRCOR International has completed the previously announced acquisition of Fluid Handling (FH) from Colfax Corporation for approximately $693 million of cash and newly issued CIRCOR shares, and $150 million related to the assumption of pension plan liabilities linked to the FH business. FH will become...

Readmore

Classic Controls Certified by ITT Engineered Valves, REXA

5 DAYS AGO

Classic Controls is now certified by ITT Engineered Valves to repair Skotch brand FM approved and general purpose burner shut-off valves for oil and gas fired systems.

REXA, Inc. has also appointed Classic Controls as its exclusive authorized sales representative in the state of Florida. Classic Contr...

Readmore

U.S. LNG Exports Increased as New Facilities Come Online

11 HOURS AGO

In August 2017, total U.S. natural gas liquefaction capacity in the lower 48 states increased to 2.8 billion cubic feet per day (Bcf/d) following the completion of the fourth liquefaction unit at the Sabine Pass liquefied natural gas (LNG) terminal in Louisiana. With increasing liquefaction capacity...

Readmore

China to Become Second-Largest LNG Importer

5 DAYS AGO

The world’s no. 1 energy user, China, “is on the verge of passing South Korea to become the No. 2 buyer of LNG behind Japan, as environmental measures and winter heating needs boost demand,” Bloomberg reports .

“Tankers with total capacity of 33.6 million metric tons have visited...

Readmore

NAM Survey: Manufacturers’ Optimism Reaches Record High

14 HOURS AGO

The National Association of Manufacturers (NAM) released the results of the Manufacturers’ Outlook Survey for the fourth quarter of 2017, showing manufacturers’ optimism has risen to unprecedented heights amid the legislative progress made on tax reform. With 94.6% of respondents saying ...

Readmore

Construction Index Remains Strong in November

1 DAY AGO

The Dodge Momentum Index surged again in November, climbing 13.9% to 149.5 from the revised October reading of 131.3. The Momentum Index is a monthly measure of the first (or initial) report for nonresidential building projects in planning, which have been shown to lead construction spending for non...

Readmore

Welding Procedure

materials_q_and_a_graphicQ: I need to qualify a welding procedure specification per Section IX of the ASME Boiler and Pressure Vessel Code. What are some of the basics I need to understand?

A: Section IX of the ASME Boiler and Pressure Vessel Code is very complex, and the rules for qualifying welding procedures vary depending upon the welding processes used and the materials being welded. However, a few of the fundamental concepts are often misunderstood, and gaining a firm understanding of those concepts will make it easier for a new user of this code section to figure out how it works.

Section IX Part QW (which covers welding) is divided into four articles—I, II, III and IV:

  • Article I covers general requirements.
  • Article II covers requirements for qualifying welding procedures.
  • Article III covers qualification of welders and welding operators (which is outside the scope of this article).
  • Article IV covers welding data—variables, material groupings, test specimen requirements, etc.


A good way to begin is to read articles I and II. There is no point “reading” most of article IV because it is primarily dedicated to describing variables. However, the text at the beginning of each major section should be reviewed, including QW-401 (description of variables), QW-420 (material groupings), QW-424 (base metals for procedure qualification) and QW-431 (F-Numbers). Also, the definitions in QW-490 should be reviewed, as some of the terms used in the text may not mean what they seem to imply.

The end goal is a viable welding procedure specification (WPS). The WPS is a document that states requirements regarding the materials that may be welded, which welding process must be used, the filler metal used, the minimum preheat temperature, welding parameters such as current, voltage, travel speed, interpass temperature, PWHT requirements, etc.

The WPS is based upon the successful creation of a welded qualification test coupon. The procedure qualification record (PQR) is a document that lists all pertinent data associated with the creation and testing of the qualification specimen.

A common misconception is that the WPS is written first, and then the test coupon is created to “prove” that the WPS is valid. In actuality, the qualification coupon is created first. The PQR document is written, and then the WPS is created based upon the PQR data. The rules in Section IX govern how the parameters specified in the WPS are determined using the PQR data as a basis.

VARIABLES

In Section IX parlance, a variable is a parameter or factor that has been determined to have an effect upon the welding characteristics or the resulting weldment. Section IX includes many variables, and has categorized them for various welding situations as “essential,” “nonessential” and “supplementary essential.”

For a given welding situation, an essential variable is one that has been identified as critical to the success of the welding process or to the properties of the resulting weldment. A change in an essential variable requires requalification of the welding procedure.

A nonessential variable is a variable that must be documented in the WPS, but which may be changed during an editorial revision without requalification of the procedure.

A supplementary essential variable is a parameter or factor that becomes an essential variable when the base material is required to be impact tested.

Lists of essential, supplementary essential and non-essential variables for various welding processes are listed in tables immediately following paragraph QW-250. For example, QW-253 covers SMAW joining, and lists the paragraphs that describe the essential, supplementary essential and nonessential variables that apply. Two examples of variables listed in QW-253, and their impact are:

  • QW-406.1 - Decrease > 100° F (55° C) is an essential variable. Paragraph QW-406.1 states: “QW-406.1 A decrease of more than 100° F (55° C) in the preheat temperature qualified. The minimum temperature for welding shall be specified in the WPS.”
    Therefore, assuming the PQR lists a preheat temperature of 150° F (65° C), the WPS can be written with a preheat temperature as low as 50° F (10° C). If creating or revising the WPS to utilize a preheat temperature below 50° F (10° C) is desired, the procedure would need to be requalified.
  • QW-406.3 - Increase > 100° F (55° C) (IP) is a supplementary essential variable. Paragraph QW-406.3 states: “QW-406.3 An increase of more than 100° F (55° C) in the maximum interpass temperature recorded on the PQR. This variable does not apply when a WPS is qualified with a PWHT above the upper transformation temperature or when an austenitic material is solution annealed after welding.”


Since this is a supplementary essential variable, it only applies if the base material is required to be impact tested (such as ASME SA352 LCC). Assuming that is so, and assuming the PQR lists a maximum interpass temperature of 500° F (260° C), the WPS can be written with a maximum interpass temperature of up to 600° F (315° C). If creating or revising a WPS to increase the maximum interpass temperature to higher than 600° F (315° C) is desired, the procedure would need to be requalified.

Note there are many QW-4XX paragraphs that describe variables; however, the only ones that apply to the welding procedure are those referenced in the QW-25X tables for the welding processes being used.

A valid WPS lists all essential and non-essential variables (and supplementary essential variables if the base metal is required to be impact tested), and provides appropriate values for each.

New users of Section IX sometimes think they can just use the example forms in Section IX and fill them in based upon what seems “obvious.” This approach is unlikely to result in a procedure that properly addresses the variables. The best way to ensure a WPS is complete and correct is to use the QW-250 tables as a type of “index” to ensure that all appropriate variables are included and properly addressed, and to review the definitions in QW-490 to ensure all terminology is interpreted and used correctly.


Don Bush is a principal materials engineer at Emerson Process Management-Fisher Valve Division (www.emersonprocess.com). Reach him at This email address is being protected from spambots. You need JavaScript enabled to view it..

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association