06252016Sat
Last updateFri, 24 Jun 2016 2pm

i

Problem-Driven Innovation

Problem-Driven Innovation

Developing Alternative Technology to Imp...

Valve Repair Takes Center Stage in Houston

Valve Repair Takes Center Stage in Houston

Attendees gathered June 2-3 in Houston t...

What Internal Best Practices Can Do for Valve Selection

What Internal Best Practices Can Do for Valve Selection

As time goes by, technology moves forwar...

Subscribe

SUBSCRIBE

•  Digital magazine

•  Print magazine

•  VALVE eNews

Read the latest issue of VALVE Magazine

BUYERS GUIDE 300x220

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Advertisement
i

Web Only

Problem-Driven Innovation

Problem-Driven Innovation

Monday, 20 June 2016  |  Mark A. Lobo, P.E.

Developing Alternative Technology to Improve Product Performance

Industrial product engineering teaches us to understand the difference between problem...

Readmore

Loading...

Industry Headlines

Curtiss-Wright Awarded Contracts for U.S. Naval Defense Platforms

1 DAY AGO

Curtiss-Wright announced that it has been awarded contracts valued in excess of $80 million to provide valves for the U.S. Navy’s Virginia-class submarines and Ford-class aircraft carriers. The awards were received from Bechtel Plant Machinery, Inc. and General Dynamics Electric Boat Division ...

Readmore

DeZURIK Adds Dedicated Clean Room to Sartell Plant

3 DAYS AGO

In order to ensure proper cleaning procedures are performed on valves intended for oxygen, ozone, chlorine, hydrogen peroxide, isocyanate and other applications, DeZURIK has constructed a new dedicated clean room within its Sartell, MN manufacturing plant.

Operated by trained cleaning technicians, DeZU...

Readmore

Global Upstream Spending Slashed by $1 Trillion

1 DAY AGO

Global upstream development spending from 2015 to 2020 has been cut by 22% or $740 billion since the oil price started to drop two years ago, according Wood Mackenzie's research . When you include cuts to conventional exploration investment, the figure increases to just over $1 trillion. Expect to see...

Readmore

EPA Bans Fracking Wastewater Disposal at Public Treatment Plants

3 DAYS AGO

The EPA has finalized a rule establishing pretreatment standards for discharges of wastewater from onshore unconventional oil and gas (UOG) extraction facilities to municipal sewage treatment plants (also known as publicly owned treatment works, or POTWs). The rule is designed to prevent the discharge...

Readmore

U..S. Durable Goods Orders Down 2.2% in May

15 HOURS AGO

New orders for manufactured durable goods in May decreased $5.3 billion or 2.2% to $230.7 billion, the Commerce Department announced today. This decrease , down following two consecutive monthly increases, followed a 3.3% April increase. Excluding transportation, new orders decreased 0.3%. Excluding d...

Readmore

Federal Judge Halts New BLM Fracking Rules

1 DAY AGO

“The Obama administration will fight a federal judge’s ruling overturning its effort to regulate hydraulic fracturing on public lands,” Bloomberg reports . The White House says they will take the case to the U.S. Court of Appeals.

“The ruling, issued late Tuesday by Wyoming-based...

Readmore

Welding Procedure

materials_q_and_a_graphicQ: I need to qualify a welding procedure specification per Section IX of the ASME Boiler and Pressure Vessel Code. What are some of the basics I need to understand?

A: Section IX of the ASME Boiler and Pressure Vessel Code is very complex, and the rules for qualifying welding procedures vary depending upon the welding processes used and the materials being welded. However, a few of the fundamental concepts are often misunderstood, and gaining a firm understanding of those concepts will make it easier for a new user of this code section to figure out how it works.

Section IX Part QW (which covers welding) is divided into four articles—I, II, III and IV:

  • Article I covers general requirements.
  • Article II covers requirements for qualifying welding procedures.
  • Article III covers qualification of welders and welding operators (which is outside the scope of this article).
  • Article IV covers welding data—variables, material groupings, test specimen requirements, etc.


A good way to begin is to read articles I and II. There is no point “reading” most of article IV because it is primarily dedicated to describing variables. However, the text at the beginning of each major section should be reviewed, including QW-401 (description of variables), QW-420 (material groupings), QW-424 (base metals for procedure qualification) and QW-431 (F-Numbers). Also, the definitions in QW-490 should be reviewed, as some of the terms used in the text may not mean what they seem to imply.

The end goal is a viable welding procedure specification (WPS). The WPS is a document that states requirements regarding the materials that may be welded, which welding process must be used, the filler metal used, the minimum preheat temperature, welding parameters such as current, voltage, travel speed, interpass temperature, PWHT requirements, etc.

The WPS is based upon the successful creation of a welded qualification test coupon. The procedure qualification record (PQR) is a document that lists all pertinent data associated with the creation and testing of the qualification specimen.

A common misconception is that the WPS is written first, and then the test coupon is created to “prove” that the WPS is valid. In actuality, the qualification coupon is created first. The PQR document is written, and then the WPS is created based upon the PQR data. The rules in Section IX govern how the parameters specified in the WPS are determined using the PQR data as a basis.

VARIABLES

In Section IX parlance, a variable is a parameter or factor that has been determined to have an effect upon the welding characteristics or the resulting weldment. Section IX includes many variables, and has categorized them for various welding situations as “essential,” “nonessential” and “supplementary essential.”

For a given welding situation, an essential variable is one that has been identified as critical to the success of the welding process or to the properties of the resulting weldment. A change in an essential variable requires requalification of the welding procedure.

A nonessential variable is a variable that must be documented in the WPS, but which may be changed during an editorial revision without requalification of the procedure.

A supplementary essential variable is a parameter or factor that becomes an essential variable when the base material is required to be impact tested.

Lists of essential, supplementary essential and non-essential variables for various welding processes are listed in tables immediately following paragraph QW-250. For example, QW-253 covers SMAW joining, and lists the paragraphs that describe the essential, supplementary essential and nonessential variables that apply. Two examples of variables listed in QW-253, and their impact are:

  • QW-406.1 - Decrease > 100° F (55° C) is an essential variable. Paragraph QW-406.1 states: “QW-406.1 A decrease of more than 100° F (55° C) in the preheat temperature qualified. The minimum temperature for welding shall be specified in the WPS.”
    Therefore, assuming the PQR lists a preheat temperature of 150° F (65° C), the WPS can be written with a preheat temperature as low as 50° F (10° C). If creating or revising the WPS to utilize a preheat temperature below 50° F (10° C) is desired, the procedure would need to be requalified.
  • QW-406.3 - Increase > 100° F (55° C) (IP) is a supplementary essential variable. Paragraph QW-406.3 states: “QW-406.3 An increase of more than 100° F (55° C) in the maximum interpass temperature recorded on the PQR. This variable does not apply when a WPS is qualified with a PWHT above the upper transformation temperature or when an austenitic material is solution annealed after welding.”


Since this is a supplementary essential variable, it only applies if the base material is required to be impact tested (such as ASME SA352 LCC). Assuming that is so, and assuming the PQR lists a maximum interpass temperature of 500° F (260° C), the WPS can be written with a maximum interpass temperature of up to 600° F (315° C). If creating or revising a WPS to increase the maximum interpass temperature to higher than 600° F (315° C) is desired, the procedure would need to be requalified.

Note there are many QW-4XX paragraphs that describe variables; however, the only ones that apply to the welding procedure are those referenced in the QW-25X tables for the welding processes being used.

A valid WPS lists all essential and non-essential variables (and supplementary essential variables if the base metal is required to be impact tested), and provides appropriate values for each.

New users of Section IX sometimes think they can just use the example forms in Section IX and fill them in based upon what seems “obvious.” This approach is unlikely to result in a procedure that properly addresses the variables. The best way to ensure a WPS is complete and correct is to use the QW-250 tables as a type of “index” to ensure that all appropriate variables are included and properly addressed, and to review the definitions in QW-490 to ensure all terminology is interpreted and used correctly.


Don Bush is a principal materials engineer at Emerson Process Management-Fisher Valve Division (www.emersonprocess.com). Reach him at This email address is being protected from spambots. You need JavaScript enabled to view it..

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association