08262016Fri
Last updateThu, 25 Aug 2016 4pm

i

Valve Basics Training Helps Fill Industry Skills Gap

Valve Basics Training Helps Fill Industry Skills Gap

One of the most keenly felt needs in tod...

An End-User’s Perspective on Valve Selection and Risk

An End-User’s Perspective on Valve Selection and Risk

I am not a valve expert, although I ofte...

New Test Stamp and More Updates on Pressure Vessel Codes

New Test Stamp and More Updates on Pressure Vessel Codes

A new test organization program and stam...

The Role of Valves in HAZOP Studies

The Role of Valves in HAZOP Studies

Process hazard analysis (PHA) is require...

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Advertisement
i

Industry Headlines

ValvTechnologies Successfully Completes NUPIC Audit

1 DAY AGO

ValvTechnologies, Inc. recently achieved NUPIC-approved suppliers list status, upon successful completion of the Nuclear Procurement Issues Committee (NUPIC) audit conducted at the Houston facility. NUPIC members include all domestic U.S. nuclear utilities as well as several international members.

Form...

Readmore

GE Oil & Gas Supporting ONGC’s Exploratory Drilling Campaign in India

1 DAY AGO

GE Oil & Gas has been awarded a multi-million-dollar frame agreement by Oil and Natural Gas Corporation Limited (ONGC), India’s largest exploration and production company. Under the agreement , GE will provide an estimated 55 subsea wellheads (SG5) over next three years for the operator&rsqu...

Readmore

Chemical Activity Barometer Suggests Accelerated Business Activity

2 DAYS AGO

The Chemical Activity Barometer (CAB) expanded 0.4% in August following an upward revision for July. This marks the barometer’s sixth consecutive monthly gain. Accounting for adjustments, the CAB is up 3.2% over this time last year, the strongest year over year growth since January 2015. All d...

Readmore

Innovation Could Lead to Significant Cuts in Chemical Manufacturing Energy Use

2 DAYS AGO

Scientists from ExxonMobil and Georgia Tech have developed a new technology that could significantly reduce the amount of energy and emissions associated with manufacturing plastics. If brought to industrial scale, this breakthrough could reduce industry’s global annual carbon dioxide emissions ...

Readmore

Manufacturing Productivity in U.S. Higher Than Other Nations

9 HOURS AGO

“U.S. productivity unexpectedly declined for a third straight quarter in the three months through June, Labor Department figures showed. On a year-over-year basis, it fell for the first time since 2013,” Bloomberg reports .

But on a more positive note, “the U.S. still blows other natio...

Readmore

Durable Goods Orders Up 4.4%, a Six-Month High

11 HOURS AGO

New orders for manufactured durable goods in July increased $9.7 billion or 4.4% to $228.9 billion, the U.S. Commerce Department announced. This increase, up following two consecutive monthly decreases, followed a 4.2% June decrease. Excluding transportation, new orders increased 1.5%. Excluding def...

Readmore

Cobalt-based Alloy 6 Materials and Boiler Feedwater Service

materials_q_and_a_graphicQ: I’ve heard that cobalt-base Alloy 6 materials should not be used in boiler feedwater service. Is this true?

A: Cobalt-chromium Alloy 6 is a very popular material for hard valve trim in applications requiring resistance to sliding wear, erosion and/or cavitation. It’s even successfully used in applications that are somewhat corrosive. However, in some areas of boiler feedwater applications where it would seem Alloy 6 should perform well, problems have been encountered. Here are some theories and facts about the problems:

Alloy 6 is available in cast, wrought and weld overlay forms. The cast material designation is UNS R30006; wrought material is designated UNS R30016, but is commonly called Alloy 6B; the generic AWS designation for hardsurfacing material is CoCr-A (specific designations are ECoCr-A for SMAW electrodes and ERCoCr-A for bare electrodes).

Alloy 6 is a cobalt-chromium-tungsten alloy with approximately 1% carbon. The material consists of a soft, solid solution matrix of cobalt-chromium tungsten surrounding a small percentage of hard, brittle chromium carbides.

Although the carbide phase provides the high hardness (approximately 40 HRC), research has shown that the cobalt-chromium-tungsten matrix is responsible for the alloy’s excellent wear and cavitation resistance. Alloy 6 undergoes a phase transformation (i.e., a change in crystal structure) when highly stressed, such as in a wear or cavitation situation. This phase transformation absorbs some energy that would otherwise cause damage, in effect, reducing the overall level of damage compared with a material that does not exhibit this “shock absorption” property.

Like most corrosion-resistant alloys containing chromium as an alloying element, Alloy 6 achieves corrosion resistance from the formation of a stable chromium oxide passive layer. This passive layer protects the underlying material from reacting with the environment. Certain chemicals can weaken the passive layer, reducing its ability to protect the material from corrosion.

Performance problems with Alloy 6 have been experienced in boiler feedwater applications where the water is treated with hydrazine or some other amine derivative. The problems occur exclusively in regions where the flow velocity is high, indicating that the failure mode is actually erosion-corrosion. Two possible explanations for this phenomenon are that:

1) The amine compounds weaken the oxide passive layer so that it erodes easily. The passive layer is repeatedly eroded away and rebuilt, resulting in accelerated corrosion.

2) The amines prevent the oxide passive layer from reforming after it has eroded initially, thus leaving the alloy unprotected from corrosion. Further erosion-corrosion then occurs at accelerated rates.

Other possible mechanisms for this type of failure may also exist, but the point remains that the alloy is attacked at higher rates than would be expected in an equivalent water application without the presence of the amine compounds.

Studies of returned parts have demonstrated that these attacks definitely correlate to the presence of Alloy 6. The photographs in Figures 1 through 4 were obtained during evaluation of a valve plug with Alloy 6 seat and guide surfaces that suffered erosion- corrosion damage in boiler feedwater. It’s very clear that the damage occurred exclusively in the CoCr-A material, and that the adjacent S31600 material is relatively unaffected, even though it is much softer.

Many failures have occurred in feedwater regulating valves, too. Failures have been reported in special- and standard-trim valves operating at temperatures as low as 300° F (149° C) and pressure drops as low as 100 psi (7 bar). Similar failures have been experienced in tungsten carbide trim in amine-treated feedwater and in ammonia applications when a cobalt binder phase is used.

No amine content, temperature or velocity limits have been established for safe use of Alloy 6 materials in feedwater. Common practice is to avoid the use of cobalt-containing alloys in feedwater service unless the feedwater is known to be compatible with cobalt alloys.

Common alternatives to Alloy 6 include hardened stainless steels such as S41600 (Type 416 SST), S41000 (Type 410 SST), S42000 (Type 420 SST), S44004 (Type 440C SST), or S17400 (17-4 PH SST). In some severely erosive applications, nickel base or iron-base hard-surfacing materials have been used.

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association