07252016Mon
Last updateMon, 25 Jul 2016 3pm

i

Basics of Elastomeric Seal Design

Basics of Elastomeric Seal Design

Engineers need critical design informati...

Wastewater Treatment

Wastewater Treatment

Society’s desire for a clean envir...

Controlling Our Water Systems, Part II

Controlling Our Water Systems, Part II

To better understand the actuators and c...

Controlling Our Water Systems

Controlling Our Water Systems

Actuators and controls are a critical pr...

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Sharpest Rise in U.S. Manufacturing Production Since November

Monday, 25 July 2016  |  Chris Guy

July data signaled a further rebound in business conditions across the U.S. manufacturing sector, led by a robust expansion of incoming new work and t...

Readmore

Loading...
Advertisement
i

Industry Headlines

Emerson Exploring Acquisition of Pentair Valves & Controls

2 HOURS AGO

Reuters UK has spoken to sources that confirm Emerson has made an offer to acquire Pentair Valves & Controls. Pentair Plc added the Valves & Controls division after its merger with Tyco Flow Control in 2012.

“Pentair has received offers for the valves and controls business from companies o...

Readmore

Pentair Valves & Controls Rolls Out Customer Education Program

3 DAYS AGO

Pentair Valves & Controls has introduced the Pentair University customer education program for past, present and prospective clients and industry leaders in various locations throughout the world. Pentair University’s invitation-only seminars are free to attend. In some regions of the worl...

Readmore

Canadian Oil & Gas Earnings Signal Industry Recovery

3 DAYS AGO

The Canadian oil and gas earnings season began yesterday with “signs of an industry recovery as Encana Corp and Precision Drilling Corp outlined plans to boost activity,” Reuters reports .

Analysts say “the uptick in optimism might be mirrored by some U.S. shale companies like Pioneer ...

Readmore

U.S. Lower 48 Sustains $150B in Cuts by Upstream Developers

3 DAYS AGO

Out of the more than $370 billion in global capital expenditure cut by upstream developers across 2016 and 2017, $150 billion was slashed in the U.S. Lower 48 alone — more than three times any other single country. Largely due to responsiveness and flexibility in the unconventional space, spen...

Readmore

Sharpest Rise in U.S. Manufacturing Production Since November

1 HOUR AGO

July data signaled a further rebound in business conditions across the U.S. manufacturing sector, led by a robust expansion of incoming new work and the fastest upturn in production volumes for eight months. Job creation also strengthened in July, with the latest increase in payroll numbers the fast...

Readmore

Texas Manufacturing Activity Stabilizes

2 HOURS AGO

Texas factory activity held steady in July, according to business executives responding to the Texas Manufacturing Outlook Survey . The production index, a key measure of state manufacturing conditions, came in near zero after two months of negative readings, suggesting output stopped falling this mon...

Readmore

Specifying Valves for Hydrogen Service

materials_q_and_a_graphicQ: When specifying valves for hydrogen service, what are some of the material considerations I should keep in mind?

A: Hydrogen can cause a number of different adverse effects in metallic materials. The specific problems that can occur, and the methods for avoiding them, depend upon the service conditions. Although the subject is much too vast to cover completely in this column, following are descriptions of the predominant hydrogen damage mechanisms, along with some suggestions for avoiding problems.

Hydrogen Embrittlement
Hydrogen embrittlement, also called hydrogen stress cracking or hydrogen induced cracking, is a condition of low ductility in metals resulting from the absorption of hydrogen. Hydrogen embrittlement is mainly a problem in steels with ultimate tensile strength greater than 90 ksi, although a number of additional alloys are susceptible. Most hydrogen embrittlement failures occur as a result of absorption of hydrogen that is generated during plating, pickling, or cleaning operations. However, hydrogen charging may also occur in-service. This usually occurs in cases where hydrogen is generated due to corrosion, although it can also occur in high-temperature hydrogen applications. Hydrogen embrittlement failures are most often characterized as delayed, catastrophic failures occurring at temperatures near ambient, at stresses below the yield strength, and exhibiting single, non-branching cracks. However, failures deviating from these characteristics can and do occur.

The hydrogen embrittlement phenomenon requires a source of hydrogen ions (H+) or monatomic hydrogen (H). Diatomic (molecular) hydrogen (H2) will not cause hydrogen embrittlement, because the H2 molecules are too large to diffuse into the metallic crystal structure.

Hydrogen ions are created during any electrolytic or aqueous corrosion process, including general corrosion, galvanic corrosion, pitting corrosion, electrocleaning, electropolishing, pickling, and electroplating processes.

Monatomic hydrogen (H) is formed by dissociation of diatomic hydrogen (H2) at high temperatures. Reportedly, this dissociation begins to occur at around 350°F(175°C), with the proportion of H/H2 increasing as temperature increases.

It should be mentioned that although hydrogen embrittlement is most likely to occur at ambient temperatures, ambient-temperature failure may occur in a material that was "charged" with hydrogen during exposure at elevated temperature.

Since sulfide stress cracking is essentially hydrogen embrittlement catalyzed by the presence of sulfide ions, NACE MR0175/ISO 15156, Petroleum and Natural Gas Industries - Materials for Use in H2S-containing Environments in Oil and Gas Production, and/or NACE MR0103, Materials Resistant to Sulfide Stress Cracking in Corrosive Petroleum Refining Environments, can be used as guidelines for general materials selection to avoid hydrogen embrittlement. However, the requirements in these standards are somewhat conservative for avoidance of conventional hydrogen embrittlement. In general, steels below approximately 35 HRC are generally acceptable for applications where conventional hydrogen embrittlement is a concern, whereas the NACE standards would require steels to meet a 22 HRC maximum hardness requirement. Austenitic stainless steels, most nickel and copper alloys, and aluminum alloys are generally resistant to hydrogen embrittlement, although certain precipitation-hardened and/or strain-hardened grades in these material families can suffer hydrogen embrittlement.

Hydrogen Attack
When carbon and low-alloy steels are exposed to high-pressure, high-temperature hydrogen, the monatomic hydrogen can diffuse into the steel and combine with the carbon in the steel to form methane gas, which becomes trapped at grain boundaries and other discontinuities in the material. The resulting internal decarburization and grain boundary fissuring degrades the mechanical properties of the material. Resistance to hydrogen attack increases with increasing chromium and molybdenum levels, since these elements form more stable carbides than iron, and do not release the carbon to the hydrogen as readily. API-recommended Practice 941, Steels for Hydrogen Service at Elevated Temperatures and Pressure in Petroleum Refineries and Petrochemical Plants, includes a diagram (commonly called a Nelson curve), which shows zones where the carbon and alloy steel materials are acceptable as a function of hydrogen partial pressure and temperature.

Hydrogen Blistering
Hydrogen blistering is the formation of blisters containing hydrogen gas in steels. This occurs when monatomic hydrogen (H) diffuses through the steel and recombines into molecular hydrogen (H2) at internal defects such as voids, laminations, and non-metallic inclusions. Molecular hydrogen cannot diffuse back out through steel, so the gradual buildup of molecular hydrogen results in increased pressure inside the defect cavities, eventually causing blistering of the material. Killed steels often are specified for elevated-temperature hydrogen applications or for applications where it is known that ionic hydrogen is generated. Killed steels are steels treated with a strong deoxidizing agent such as silicon or aluminum in order to reduce the oxygen content in the molten ingot, which in turn reduces the level of gas porosity in the finished steel. Killed steels are more resistant to hydrogen blistering than non-killed steels due to their relative lack of internal voids. The term "killed" actually only pertains to wrought products; however, cast steels are also deoxidized with elements such as silicon or aluminum to prevent the formation of gas porosity.

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association