08292016Mon
Last updateThu, 25 Aug 2016 4pm

i

Valve Basics Training Helps Fill Industry Skills Gap

Valve Basics Training Helps Fill Industry Skills Gap

One of the most keenly felt needs in tod...

An End-User’s Perspective on Valve Selection and Risk

An End-User’s Perspective on Valve Selection and Risk

I am not a valve expert, although I ofte...

New Test Stamp and More Updates on Pressure Vessel Codes

New Test Stamp and More Updates on Pressure Vessel Codes

A new test organization program and stam...

The Role of Valves in HAZOP Studies

The Role of Valves in HAZOP Studies

Process hazard analysis (PHA) is require...

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Advertisement
i

Industry Headlines

ValvTechnologies Successfully Completes NUPIC Audit

4 DAYS AGO

ValvTechnologies, Inc. recently achieved NUPIC-approved suppliers list status, upon successful completion of the Nuclear Procurement Issues Committee (NUPIC) audit conducted at the Houston facility. NUPIC members include all domestic U.S. nuclear utilities as well as several international members.

Form...

Readmore

GE Oil & Gas Supporting ONGC’s Exploratory Drilling Campaign in India

4 DAYS AGO

GE Oil & Gas has been awarded a multi-million-dollar frame agreement by Oil and Natural Gas Corporation Limited (ONGC), India’s largest exploration and production company. Under the agreement , GE will provide an estimated 55 subsea wellheads (SG5) over next three years for the operator&rsqu...

Readmore

Chemical Activity Barometer Suggests Accelerated Business Activity

5 DAYS AGO

The Chemical Activity Barometer (CAB) expanded 0.4% in August following an upward revision for July. This marks the barometer’s sixth consecutive monthly gain. Accounting for adjustments, the CAB is up 3.2% over this time last year, the strongest year over year growth since January 2015. All d...

Readmore

Innovation Could Lead to Significant Cuts in Chemical Manufacturing Energy Use

5 DAYS AGO

Scientists from ExxonMobil and Georgia Tech have developed a new technology that could significantly reduce the amount of energy and emissions associated with manufacturing plastics. If brought to industrial scale, this breakthrough could reduce industry’s global annual carbon dioxide emissions ...

Readmore

Manufacturing Productivity in U.S. Higher Than Other Nations

3 DAYS AGO

“U.S. productivity unexpectedly declined for a third straight quarter in the three months through June, Labor Department figures showed. On a year-over-year basis, it fell for the first time since 2013,” Bloomberg reports .

But on a more positive note, “the U.S. still blows other natio...

Readmore

Durable Goods Orders Up 4.4%, a Six-Month High

3 DAYS AGO

New orders for manufactured durable goods in July increased $9.7 billion or 4.4% to $228.9 billion, the U.S. Commerce Department announced. This increase, up following two consecutive monthly decreases, followed a 4.2% June decrease. Excluding transportation, new orders increased 1.5%. Excluding def...

Readmore

Wrong Alloy?

materials_q_and_a_graphicQ: My 316 stainless-steel valve is rusty and attracts a magnet. Did I get the wrong alloy?

 

A: Let's answer the second part of the question first. Forged 300-series stainless steels should be non-magnetic. However, cast versions of the 300-series stainless steels-such as CF8 (304), CF3 (304L), CF8M (316), CF3M (316L), CG8M (317), CG3M (317L), CF8C (347), etc.-are all formulated to contain some ferrite. The presence of ferrite makes the alloy less prone to cracking as the hot casting cools in the mold. Weld filler materials are also formulated to contain some ferrite for the same reason. The ferrite makes the material attract a magnet. The exact amount of ferrite, which influences the strength of magnetic attraction, is dependent on the exact chemical composition and the thermal history of the casting. In any event, CF3, CF8, CF3M, CF8M, CG3M, CG8M, and CF8C should all attract a magnet to some degree. In fact, if you have a casting in one of these alloys that doesn't attract a magnet, you should wonder whether something is wrong.

 

Now let's discuss the rusting portion of the question. While the term stainless steel implies that such an alloy is "stainless" or will not rust, the reality is that stainless-steel castings can exhibit a rusty appearance if not processed correctly. The rusty appearance is only superficial surface rust, i.e. iron oxide, and for most applications it is neither a problem nor an indication as to how the equipment will perform in service. However, there are some services where this surface rust is objectionable and special processing is necessary to make sure the stainless-steel castings are truly "stainless." Some of the industries where any rust is undesirable are food and beverage, pharmaceutical, and electronics.

Shot blasting is routinely used by foundries and forge shops to remove burned-in sand, core material, and scale that are formed during casting, forging, and/or heat-treating processes. Steel shot is normally used because it is the quickest and most economical cleaning abrasive. A slight amount of iron contamination remains on the surface of the stainless steel, and may later cause surface discoloration or rusting.

Sand blasting or grit blasting with various abrasives may also be used to clean castings and forgings. If the sand or abrasive was previously used on steel, it may contaminate the stainless-steel surface, which can result in rusting. Therefore, if sand or grit blasting is utilized, the sand or grit should either be new or only used previously for cleaning stainless-steel items.

Pickling, or the more technically correct term acid cleaning, is used to remove iron oxide that formed during the heat treatment of stainless steel or to remove free iron contamination that may have occurred from shot blasting, grit blasting, and/or grinding of stainless- steel castings or forgings. Normally, acid cleaning is only necessary for alloys that do not have sufficient chromium content to prevent oxidation of the surface during heat treatment, such as the 300-series stainless steels. The higher-chromium-content duplex stainless steels do not require acid cleaning unless they are to be used in one of the rust-sensitive industries mentioned above. Pickling is normally done as a last step before machining.

Passivation is the process by which a stainless steel will form a thin, invisible, chemically inactive surface when exposed to air or other oxygen-containing environments. At one time it was considered necessary to apply an oxidizing treatment to stainless steels in order to establish this protective oxide film. It is now accepted that this oxide film will form spontaneously in any oxygen-containing environment provided the surface has been thoroughly acid cleaned, i.e. pickled or descaled. This oxide film is the mechanism by which corrosion-resistant alloys achieve their corrosion resistance. Although a stainless steel is basically self passivating in any oxygen-containing environment, even air, some users of stainless-steel equipment still feel it is necessary to require a separate passivation treatment. If passivation is performed, it is generally done after finish machining.

Acid cleaning and passivation are covered by ASTM specifications A380 and A967. These specifications provide complete details on the acid cleaning and passivation of stainless steels as well as a variety of tests to measure the effectiveness of these processes, including simple wet-dry immersion tests to chemical testing for the detection of free iron. As with any special order requirement, there should be discussions between the manufacturer and customer up front so that everyone is in complete agreement on the processes to be used and how the results will be measured.

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association