Valve Magazine

Thu04242014

Last updateThu, 24 Apr 2014 2pm

Ivan Velan: VMA’s New Leader Has Strong Family Roots

Ivan Velan: VMA’s New Leader Has Strong Family Roots

The Valve Manufacturers Association welcomed its f...

High-Performance Polymers: The Gap Between Need and Science

High-Performance Polymers: The Gap Between Need and Science

In many engineering sectors, application environme...

Tank Cars

Tank Cars

The next time you‘re stopped at a crossing waiting...

Extracting Nutrients, Saving Resources through Livestock Water Recycling

Extracting Nutrients, Saving Resources through Livestock Water Recycling

Giant livestock farms, which can house thousands o...

VALVE Magazine Print & Digital

Subscribe spr14

Read
the latest digital edition


Subscribe to the digital edition

Subscribe to the print edition

  • VMA Links

  • Gallery of Valves

Ball Valve Butterfly Valve Check Valve Control Valve Diaphragm Valve Gate Valve Globe Valve Needle Valve Pinch Valve Plug Valve Relief Valve
BUYERS GUIDE 300x80

Sponsored Products

  • ja-news-1
  • ja-news-2
  • ja-news-3
Advertisement

Web Only

Magazine

Tank Cars

Tank Cars

The next time you‘re stopped at a crossing waiting for a mile-long train you thi...

The Expanding Network of Valves

The Expanding Network of Valves

As industry itself reaches into more and more areas of the world, getting the eq...

The Expanding Reach of Plastic Valves

The Expanding Reach of Plastic Valves

Although plastic valves are sometimes seen as a specialty product—a top choice o...

The Human Factor in Valve Operation

VM-spg11-Arrestor


Worker safety, efficiency and the cost of operations, and most recently, new methods of control, are key focal points in operating valves. One factor that affects all areas is the role and level of human involvement in the processes.

THE CHOICES

Opening or closing valves can be completed either by manual input or automated devices driven by various energy sources. Manual operators are simple, inexpensive and require little peripheral planning beyond the installation and orientation of operators in the process line. Automated devices, on the other hand, require input energy systems, control systems, additional installation space and infrastructure for support, operation and maintenance.

Two concerns considered during selection of manual operators are the effort required to operate the valve and the number of turns some valves require. A lot of effort and a high number of turns can result in personnel fatigue, safety concerns, excessive time for operation and the need for multiple personnel. Also under consideration in selecting manual operators are the valve’s expected frequency of operation and the physical location of the operation, such as whether it might be high in a superstructure or situated in an inhospitable environment. Both also present challenges to humans.

Designers have to weigh all of these factors in their decision matrix to receive the most productive yet acceptable selection of how a valve should be operated. Two aspects that primarily define operator selection are human factors and economic factors. Human factors can be defined as the human capability to cycle the valve in a safe, timely and economically sound manner. These factors require considerations such as the work needed to be done (turns and rim pull) to operate the valve, the environment in which the valve is located, the time required to complete the task, and the health and safety of the personnel involved. Economic factors include the cost of the actuator as well as the cost of infrastructure, which could include wiring, controls system, power required and ongoing maintenance to support automated solutions.

THE SPECS INVOLVED

Specifications for the highest values personnel should exert on levers or handwheels to operate a valve are defined in the industry, with current API specifications limiting pull to 360 newtons (80 pounds-force). Mechanical advantage can be used to decrease the pull required to open or close the valve by increasing the length of the lever or diameter of the handwheel mounted on the valve. How­ever, the maximum lever length or handwheel diameter is also limited by industry specifications.

As valve torque increases, maximum limits imposed by industry standards result in levers transitioning to gear units to increase mechanical advantage. However, this increase in mechanical advantage comes with the disadvantage of increasing the number of turns to move the valve across the full stroke distance.

The higher number of turns results in longer time required to cycle the valve at a constant number of revolutions per minute. With significant gear reduction, the number of turns required for full cycle can number in the hundreds. This increased number of turns leads to a greater opportunity for accidents or injury to personnel due to repetitive motion and fatigue. Companies will limit the rim pull and number of turns to reduce the risk. Once established limits are exceeded for turns, the valve is generally required to be automated.

Communicating what human factor limits might be imposed on valves can provide suppliers the opportunity to recommend the best value of operator for manual valves. Until recently, the valve industry was limited to levers, bevel gears and traditional worm gears for manual cycling. Once these devices exceeded worker safety limits, a valve purchaser’s only choice was to select an automated solution. However, new devices available in the marketplace extend the range of manual operators. These devices can reduce initial capital costs, reduce site design complexity and minimize operating expenditures. The devices include high-efficiency gear operators and portable drivers coupled with well-designed arrestors.


 

Valve Magazine Digital Edition

SPR14 CVR 160x214Inside the Spring 2014 issue…

• Tank Cars
• DBBS & DIBS
• Shale Gas
• New Globe Standard

CLICK HERE TO REQUEST YOUR
DIGITAL EDITION PREVIEW EMAIL