07232016Sat
Last updateFri, 22 Jul 2016 4pm

i

Wastewater Treatment

Wastewater Treatment

Society’s desire for a clean envir...

Controlling Our Water Systems, Part II

Controlling Our Water Systems, Part II

To better understand the actuators and c...

Controlling Our Water Systems

Controlling Our Water Systems

Actuators and controls are a critical pr...

Hardfacing Alloys and Processes for Advanced Ultra-Supercritical

Hardfacing Alloys and Processes for Advanced Ultra-Supercritical

Cobalt-based Stellite 6 has been the wor...

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Advertisement
i

Web Only

Basics of Elastomeric Seal Design

Basics of Elastomeric Seal Design

Wednesday, 20 July 2016  |  Kate Kunkel

Engineers need critical design information when choosing a seal for a particular valve application. This includes:

  • Operating temperature and pressure r...

Readmore

Loading...

Industry Headlines

Pentair Valves & Controls Rolls Out Customer Education Program

2 DAYS AGO

Pentair Valves & Controls has introduced the Pentair University customer education program for past, present and prospective clients and industry leaders in various locations throughout the world. Pentair University’s invitation-only seminars are free to attend. In some regions of the worl...

Readmore

Watson Valve Names Bob White New President

2 DAYS AGO
Watson Valve Names Bob White New President

Watson Valve Services Inc. has named Robert “Bob” White as its new president. The current president, John M. Watson, will remain as the company’s CEO.

Bob has served as executive vice president, and ownership, of Watson Valve Services since its inception in 2002. He has continued to p...

Readmore

Canadian Oil & Gas Earnings Signal Industry Recovery

1 DAY AGO

The Canadian oil and gas earnings season began yesterday with “signs of an industry recovery as Encana Corp and Precision Drilling Corp outlined plans to boost activity,” Reuters reports .

Analysts say “the uptick in optimism might be mirrored by some U.S. shale companies like Pioneer ...

Readmore

U.S. Lower 48 Sustains $150B in Cuts by Upstream Developers

2 DAYS AGO

Out of the more than $370 billion in global capital expenditure cut by upstream developers across 2016 and 2017, $150 billion was slashed in the U.S. Lower 48 alone — more than three times any other single country. Largely due to responsiveness and flexibility in the unconventional space, spen...

Readmore

STEM Jobs in the U.S. Growing Faster Than Other Fields

2 DAYS AGO

The U.S. Department of Commerce estimates that jobs in STEM will grow 17% by 2018—that’s 55% faster than non-STEM jobs over the next decade. Several reports have linked STEM education to the continued scientific leadership and economic growth of the U.S. However, economic projections also ...

Readmore

IMF Cuts Global Growth Forecast After Brexit Vote

3 DAYS AGO

The International Monetary Fund (IMF) cut its forecasts for global economic growth this year and next as the unexpected U.K. vote to leave the European Union creates a wave of uncertainty amid already-fragile business and consumer confidence.

The global economy is projected to expand 3.1% this year a...

Readmore

A Primer On Worm Gear Operators

vmsum12_worm_gears_1A remote gas pipeline installation in Pinedale, WyomingManual gear operators continue to provide a viable, age-old solution with a few 21st century twists. Understanding how these products work, as well as the tradeoffs and costs associated with manual operators, can help end users select the right technology for the application.

Over the past 30 years, valve automation has dominated the flow control industry. But even though power actuation captivates the attention, imagination and the lion’s share of growth in the market, manual valve actuation also continues to expand, receiving its own innovations. In this article, we provide an introduction to the basic principles behind these workhorse operators and discuss current trends in the market. We also consider the benefits and associated costs that come with manual worm gear designs. Please note that for ease of reference, a glossary of terms has been added; the definitions provided are industry specific and only intended to cover the depth and scope of this article (click here).


THE RANGE

Manual worm gear operators can be found in nearly every valve application throughout the world. Manual operators have no power requirements, no hydraulic or pneumatic pressure unit to maintain and can be used in the most remote locations. From submarine duty to mining, water works to oil and gas pipelines, if torque is required, manual worm gear operators are there.

To begin, it may help to view the world through the eyes of the application engineer. We push up our stylish horn rim glasses, open our 20-tab spreadsheet product selector and ask: “Torque or thrust?” The first consideration in selecting an actuator is the type of force required. Torque, that rotational or twisting force necessary to position ball valves, plug valves, butterfly valves, etc., will be the focus of this article.

Let’s look at the fundamental challenge our application engineer faces, which is: “How do we provide a means to safely and effectively position the valve?”

vmsum12_worm_gears_2Figure 1. A simple lever can work when just a small amount of torque is needed.If the valve torque is small enough, a wrench or lever of adequate length or a handwheel of the appropriate diameter provide simple solutions to our dilemma (Figure 1). Both the handwheel and the lever increase mechanical advantage by applying principles explained by Archimedes more than 2,000 years ago. Levers, while efficient and cost-effective, remain impractical or undesirable for many applications, however. At some point, the force required to position the valve exceeds the feasibility of a simple lever; this is where worm gear operators enter the picture.

We have used gears for thousands of years to harness energy from wind, water and beasts. Think of gear mechanisms as a series of interacting levers and screws. In our application, gears are used to amplify torque. In short, we use gears to convert force to work.


THE MECHANISM

vmsum12_worm_gears_3Figure 2. A simple cylindrical single-start worm and worm gear set.Worm gear operators are used for actuation because they offer high torque multiplication and load-carrying capability in a small, low-cost package. Figure 2 presents an example of a typical worm gear set found in a manual worm gear operator.

Following conventional American Gear Manufacturers Association (AGMA) (www.agma.org) gear design standards, if a single-start worm is the drive and an 80-tooth worm gear is the driven, the ratio would be expressed as 1:80 (the formula is available in the glossary). That’s a lot of ratio in a small package. But these numbers only tell us that it takes 80 worm revolutions (drive) to complete one revolution of the worm gear (driven). The ratio tells us about the mechanism’s effect on speed but little about torque. To understand the effect on torque, we need to know the mechanical advantage (MA). In a perfect machine, a 1:80 ratio would net an MA of 1:80 (expressed as 80), meaning that for 1 unit of force applied, 80 units of force are generated.

Does this mean free torque? Unfortunately, no. The energy of the universe is constant and as with everything, there is an associated cost.


THE COSTS

What are the costs associated with amplifying force through our manual actuator? The first cost is hard cash—the worm gear actuator will cost more than a lever or handwheel.

Second, machines are not perfect, which is demonstrated in efficiency losses through heat and wear. As it turns out, standard single-start metal worm gear sets are less than 35% efficient by design. Also, worm gear sets with a worm thread angle and design, which net an efficiency of approximately 35% and greater, are not typically self-locking, and without self-locking characteristics are not suitable for a number of applications. Based on a website sample of the top manufacturers, 32% is the approximate average efficiency for manual worm gear operators. This simple formula explains what happens to mechanical advantage in a 32% efficient gear train:

80 x .32 = 25.6 MA

The MA would be approximately 25, not 80. That is nearly 55 points of mechanical advantage lost to ­inefficiency.

Third, and not captured in manufacturer’s data sheets, is the cost in the exchange of force for distance. We increase force by simply making more trips, or more specifically, more turns on the handwheel to cycle the valve.

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association