12052016Mon
Last updateMon, 05 Dec 2016 7pm

i

Valves in a Cement Slurry Line

Valves in a Cement Slurry Line

Basically everywhere you look in modern ...

Triple Offset Butterfly Valves

Triple Offset Butterfly Valves

Since their introduction to the market m...

Digital Valve Control Leads to Increased Plant Availability

Digital Valve Control Leads to Increased Plant Availability

Surge is characterized by fast flow reve...

Cast vs. Forged: The Ongoing Debate Takes a New Direction

Cast vs. Forged: The Ongoing Debate Takes a New Direction

In the valve industry, the cast versus f...

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Fitch: Energy Recovery Should Boost Chemical Companies

Monday, 05 December 2016  |  Chris Guy

Modest reflation in the energy sector should filter through to higher prices for petrochemicals, plastics and other chemicals with energy-related feed...

Readmore

Loading...

Industry Headlines

VMA Members Among Plant Engineering 2016 Product of the Year Finalists

4 DAYS AGO

Several VMA members are among this year’s Plant Engineering Product of the Year finalists. Emerson has products nominated in four different categories, while Siemens has several products nominated in a total of three different categories. Chesterton and Hunt Valve have products up for awards the...

Readmore

MSS Publishes Revised American National Standard for Steel Pipeline Flanges and Receives ANSI Approval

4 DAYS AGO

The Manufacturers Standardization Society (MSS) announces that the substantially revised Standard Practice, SP-44-2016, Steel Pipeline Flanges, has been approved by the American National Standards Institute (ANSI) as a Revised American National Standard (ANS).

The first edition of MSS SP-44 was publish...

Readmore

Fitch: Energy Recovery Should Boost Chemical Companies

-1 DAYS AGO

Modest reflation in the energy sector should filter through to higher prices for petrochemicals, plastics and other chemicals with energy-related feedstocks, resulting in higher sales, earnings and cash flow, according to Fitch Ratings . Market conditions support stable operating profiles for North Am...

Readmore

BP Approves $9 Billion Project in Deepwater Gulf of Mexico

2 HOURS AGO

BP has sanctioned the Mad Dog Phase 2 project in the U.S., despite the current low oil price environment. Mad Dog Phase 2 will include a new floating production platform with the capacity to produce up to 140,000 gross barrels of crude oil per day from up to 14 production wells. The $9 billion projec...

Readmore

ISM: U.S. Manufacturing Expands at Best Pace in Five Months

2 HOURS AGO

Manufacturing expanded in November as the Institute for Supply Management’s (ISM) Purchasing Managers Index (PMI) registered 53.2%, an increase of 1.3% from the October reading of 51.9%, indicating growth in manufacturing for the third consecutive month. A reading above 50% indicates that the ma...

Readmore

U.S. Adds 178,000 Jobs, Unemployment Rate at 4.6%

3 DAYS AGO

The unemployment rate declined 0.3% to 4.6% in November, and total nonfarm payroll employment increased by 178,000, the Department of Labor reported today. Employment gains occurred in professional and business services and in health care.

Employment in construction continued on its recent upward trend...

Readmore

A Primer On Worm Gear Operators

vmsum12_worm_gears_1A remote gas pipeline installation in Pinedale, WyomingManual gear operators continue to provide a viable, age-old solution with a few 21st century twists. Understanding how these products work, as well as the tradeoffs and costs associated with manual operators, can help end users select the right technology for the application.

Over the past 30 years, valve automation has dominated the flow control industry. But even though power actuation captivates the attention, imagination and the lion’s share of growth in the market, manual valve actuation also continues to expand, receiving its own innovations. In this article, we provide an introduction to the basic principles behind these workhorse operators and discuss current trends in the market. We also consider the benefits and associated costs that come with manual worm gear designs. Please note that for ease of reference, a glossary of terms has been added; the definitions provided are industry specific and only intended to cover the depth and scope of this article (click here).


THE RANGE

Manual worm gear operators can be found in nearly every valve application throughout the world. Manual operators have no power requirements, no hydraulic or pneumatic pressure unit to maintain and can be used in the most remote locations. From submarine duty to mining, water works to oil and gas pipelines, if torque is required, manual worm gear operators are there.

To begin, it may help to view the world through the eyes of the application engineer. We push up our stylish horn rim glasses, open our 20-tab spreadsheet product selector and ask: “Torque or thrust?” The first consideration in selecting an actuator is the type of force required. Torque, that rotational or twisting force necessary to position ball valves, plug valves, butterfly valves, etc., will be the focus of this article.

Let’s look at the fundamental challenge our application engineer faces, which is: “How do we provide a means to safely and effectively position the valve?”

vmsum12_worm_gears_2Figure 1. A simple lever can work when just a small amount of torque is needed.If the valve torque is small enough, a wrench or lever of adequate length or a handwheel of the appropriate diameter provide simple solutions to our dilemma (Figure 1). Both the handwheel and the lever increase mechanical advantage by applying principles explained by Archimedes more than 2,000 years ago. Levers, while efficient and cost-effective, remain impractical or undesirable for many applications, however. At some point, the force required to position the valve exceeds the feasibility of a simple lever; this is where worm gear operators enter the picture.

We have used gears for thousands of years to harness energy from wind, water and beasts. Think of gear mechanisms as a series of interacting levers and screws. In our application, gears are used to amplify torque. In short, we use gears to convert force to work.


THE MECHANISM

vmsum12_worm_gears_3Figure 2. A simple cylindrical single-start worm and worm gear set.Worm gear operators are used for actuation because they offer high torque multiplication and load-carrying capability in a small, low-cost package. Figure 2 presents an example of a typical worm gear set found in a manual worm gear operator.

Following conventional American Gear Manufacturers Association (AGMA) (www.agma.org) gear design standards, if a single-start worm is the drive and an 80-tooth worm gear is the driven, the ratio would be expressed as 1:80 (the formula is available in the glossary). That’s a lot of ratio in a small package. But these numbers only tell us that it takes 80 worm revolutions (drive) to complete one revolution of the worm gear (driven). The ratio tells us about the mechanism’s effect on speed but little about torque. To understand the effect on torque, we need to know the mechanical advantage (MA). In a perfect machine, a 1:80 ratio would net an MA of 1:80 (expressed as 80), meaning that for 1 unit of force applied, 80 units of force are generated.

Does this mean free torque? Unfortunately, no. The energy of the universe is constant and as with everything, there is an associated cost.


THE COSTS

What are the costs associated with amplifying force through our manual actuator? The first cost is hard cash—the worm gear actuator will cost more than a lever or handwheel.

Second, machines are not perfect, which is demonstrated in efficiency losses through heat and wear. As it turns out, standard single-start metal worm gear sets are less than 35% efficient by design. Also, worm gear sets with a worm thread angle and design, which net an efficiency of approximately 35% and greater, are not typically self-locking, and without self-locking characteristics are not suitable for a number of applications. Based on a website sample of the top manufacturers, 32% is the approximate average efficiency for manual worm gear operators. This simple formula explains what happens to mechanical advantage in a 32% efficient gear train:

80 x .32 = 25.6 MA

The MA would be approximately 25, not 80. That is nearly 55 points of mechanical advantage lost to ­inefficiency.

Third, and not captured in manufacturer’s data sheets, is the cost in the exchange of force for distance. We increase force by simply making more trips, or more specifically, more turns on the handwheel to cycle the valve.

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association