06282016Tue
Last updateTue, 28 Jun 2016 8pm

i

Fugitive Emissions—Issues and Opportunities

Fugitive Emissions—Issues and Opportunities

Fugitive emissions, ppm, consent decrees...

Problem-Driven Innovation

Problem-Driven Innovation

Developing Alternative Technology to Imp...

Valve Repair Takes Center Stage in Houston

Valve Repair Takes Center Stage in Houston

Attendees gathered June 2-3 in Houston t...

What Internal Best Practices Can Do for Valve Selection

What Internal Best Practices Can Do for Valve Selection

As time goes by, technology moves forwar...

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Oil Sands Production Forecast to Grow by Nearly 1M bpd

Tuesday, 28 June 2016  |  Chris Guy

IHS, in its outlook for Canadian oil sands production through 2025, expects continued growth through the period. IHS anticipates a new phase driven pr...

Readmore

Loading...
Advertisement
i

Industry Headlines

MSS Publishes Revised Standard for High Pressure Knife Gate Valves

7 HOURS AGO

The Manufacturers Standardization Society (MSS) announces that recently revised Standard Practice, SP-135-2016, High Pressure Knife Gate Valves, has been approved by the American National Standards Institute (ANSI) as an American National Standard (ANS).

The first edition of MSS SP-135 was published in...

Readmore

Admiral Valve Joins VMA

7 HOURS AGO
Admiral Valve Joins VMA

This week the Valve Manufacturers Association (VMA) welcomed Admiral Valve LLC dba CPV Manufacturing , our sixth new member in 2016.

Admiral Valve, LLC designs and manufactures high-performance filtration systems for marine and aerospace use from their 30,000 square foot facility in the Philadelphia su...

Readmore

Oil Sands Production Forecast to Grow by Nearly 1M bpd

2 HOURS AGO

IHS, in its outlook for Canadian oil sands production through 2025, expects continued growth through the period. IHS anticipates a new phase driven primarily by the expansion of existing facilities with more attractive economics.

Oil sands production is forecast to grow by nearly one million barrels pe...

Readmore

Construction of Chemical Processing Facilities Begins in Louisiana

2 HOURS AGO

This month, LACC LLC, the joint-venture company formed by Axiall Corporation and Lotte Chemical Corporation, held a groundbreaking ceremony at its Calcasieu Parish, LA construction site. This follows a Dec. 17, 2015 announcement that the boards of Lotte and Axiall reached final investment decisions ...

Readmore

Consumer Confidence Climbs to 8-Month High

7 HOURS AGO

The Conference Board Consumer Confidence Index, which had decreased in May, improved in June. The Index now stands at 98.0 , up from 92.4 in May. Those stating business conditions are “good” increased slightly from 26.1% to 26.9%, while those saying business conditions are “bad&rdquo...

Readmore

How Will Brexit Affect the Manufacturing Industry?

1 DAY AGO

The day after the Brexit decision, National Association of Manufacturers (NAM) chief economist Chad Moutray addressed the UK vote to leave the EU and its effect on the manufacturing industry as well as the element of uncertainty it adds to the global marketplace.

According to Moutray, “If you are...

Readmore

Conversion of Hardness

materials_q_and_a_graphicQ: Are there any issues regarding conversion of hardness from one method or scale to another?

A: In one simple word, yes. Hardness is not a fundamental property of a material. In other words, it is not a property like density or elastic modulus. In the case of fundamental properties, conversion factors from one scale to another (such as from pounds per cubic inch to grams per cubic centimeter for density, or pounds per square inch to megapascals for tensile strength) involve simple unit conversion that can be as accurate as necessary depending on the number of significant digits used in the conversion factor.

The word “hardness” is usually used in reference to indentation hardness, which is the resistance of metal to plastic deformation by indentation. Indentation hardness may be measured by a number of different hardness test methods, including Brinell, Rockwell, Vickers, comparison and ultrasonic contact impedance (UCI) testers, as discussed in the previous column (Spring 2008, page 60). Indentation hardness is also sometimes determined by using a rebound hardness method (such as a Leeb tester) and converting the value to one of the indentation hardness scales.

Unfortunately, these test methods produce and measure the indentations in a variety of different manners. For example, Brinell testing involves using a very high load (usually 3000 kgf) to load a 1 cm tungsten carbide ball into the part, measuring the indentation and calculating the hardness based on an equation. Vickers testing is similar, except it indents the specimen with a square-based diamond pyramid using loads usually ranging from 1 gf to 30 kgf. Rockwell testing uses a round-based conical diamond indenter (A, C and N scales) or a spherical tungsten carbide indenter (B, F and T scales), and loads the material in two stages (minor and major loads). The differential penetration of the indenter between the minor and major loads is measured and used to determine the Rockwell hardness.

Indentation hardness readings are affected to various degrees by the fundamental properties of the material being tested, such as the elastic modulus, the yield strength and the work-hardening coefficient. Since the indentation methods are different, the various methods are measuring different combinations of these factors. This makes correlation of hardness readings taken with various methods difficult, even when only one material is involved.

This fact does not seem to be well-recognized in industry, but is known among hardness testing experts. For example, the following paragraph, extracted from ASTM E140-07 (emphasis added), provides strong indications that hardness conversion is not as straightforward as one would like to believe. Paragraphs 6.1 through 6.3 also include a number of cautionary statements regarding conversions.

1.12 Conversion of hardness values should be used only when it is impossible to test the material under the conditions specified, and when conversion is made it should be done with discretion and under controlled conditions. Each type of hardness test is subject to certain errors, but if precautions are carefully observed, the reliability of hardness readings made on instruments of the indentation type will be found comparable. Differences in sensitivity within the range of a given hardness scale (for example, Rockwell B) may be greater than between two different scales or types of instruments. The conversion values, whether from the tables or calculated from the equations, are only approximate and may be inaccurate for specific application.1

The following examples using the tables in ASTM E140 show that hardness conversion is a very risky business:

  • In Table 1 (Approximate Hardness Conversion Numbers for Non-Austenitic Steels [Rockwell C Hardness Range]), 248 Vickers is “equivalent” to 61.5 Rockwell “A”. In Table 2 (Approximate Hardness Conversion Numbers for Non-Austenitic Steels [Rockwell B Hardness Range]), Rockwell A 61.5 is “equivalent” to 240 Vickers. Which is correct?
  • In Table 2, 240 Brinell is equal to 240 Vickers, but in Table 1, 240 Brinell is equal to 251 Vickers (by interpolation). Which is correct?

The conversion issue becomes even more problematic for materials that are not covered by the standard conversion tables. Many people use ASTM E140 Tables 1 and 2 for hardness conversions for materials that are not covered in any of the tables in E140. For example, assume a specification (such as one of the NACE sour service standards) calls for a particular maximum Rockwell C hardness for a duplex stainless steel (such as 28 Rockwell C), and the hardness for the part is reported in Brinell (e.g., 286 Brinell). The existing ASTM E140 Table 1 for non-austenitic steels would indicate a conversion of 286 Brinell = 30 Rockwell C, which would cause rejection of the material. However, some private testing indicates that 286 Brinell actually converts to less than 28 HRC in at least one duplex stainless-steel material. Unfortunately, verified and standardized tables of conversion values for duplex stainless steels do not exist. This results in false rejection of materials, leading to increased costs and equipment delivery delays.

In summary, hardness conversion is a very complex subject. Conversion of readings from one scale to another or one method to another should be performed only when absolutely necessary, and with great care and consideration. Furthermore, hardness requirements for materials should be specified using methods and scales that are most appropriate for the material (e.g., Brinell for large castings instead of Rockwell B or C). This approach eliminates the need for conversion and the issues that can result.


Don Bush is a principal materials engineer at Emerson Process Management-Fisher Valve Division (www.emersonprocess.com). Reach him at This email address is being protected from spambots. You need JavaScript enabled to view it.. The author wishes to acknowledge the assistance of Thomas Spence, director of materials engineering of Flowserve Corporation (www.flowserve.com).


References

 

1. ASTM E140-07 Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness, ASTM International, West Conshohocken, PA.

 

 

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association