06262017Mon
Last updateFri, 23 Jun 2017 4pm

i

Why Air Valves are Needed in Water Applications

Why Air Valves are Needed in Water Applications

Air valves are hydromechanical devices d...

Achieving Profitability Through Maintenance Management

Achieving Profitability Through Maintenance Management

One of the distinctions between maintena...

Control Valve Positioner Performance Diagnostics

Control Valve Positioner Performance Diagnostics

There has been discussion for some years...

Are Your Safety Instrumented Systems Proof Tests Effective?

Are Your Safety Instrumented Systems Proof Tests Effective?

Many people assume that a proof test of ...

Subscribe vmspr17

FREE SUBSCRIPTION*

•  Print magazine
•  Digital magazine
•  VALVE eNews
Read the latest issue

*to qualified valve professionals in the U.S./Canada

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Advertisement
i

Industry Headlines

ITT Announces President of Industrial Process Business

3 DAYS AGO

ITT Inc. has appointed David J. Malinas as president of its Industrial Process business, reporting to Luca Savi, ITT's COO. In this role, Malinas will be responsible for delivering the strategic and operating plans of ITT's Industrial Process business, which employs about 2,500 people globally and h...

Readmore

Chesterton Expands Environmental Consulting Expertise

5 DAYS AGO

A.W. Chesterton Company  is expanding its global environmental solutions expertise with the addition of two highly experienced industrial emissions specialists, Bronson Pate and Beau Stander. Both will be joining FluidEfficiency, a Chesterton business group. Pate and Stander will serve in the ro...

Readmore

Smart Technology Transforming Oil & Gas Industry

4 DAYS AGO

“A new cadre of services companies, trying to sell the energy industry on the promise of a more efficient digital age, is fighting to get smart technology onto pipes, tanks, platforms and drills, in some cases deeply discounting prices to gain market share,” the Houston Chronicle reports .

C...

Readmore

U.S. Refineries Running at Peak Levels

5 DAYS AGO

Gross inputs to U.S. petroleum refineries, also referred to as refinery runs, averaged a record high 17.7 million barrels per day (b/d) for the week ending May 26, before dropping slightly to 17.5 million b/d for the week ending June 2 and 17.6 million b/d for the week ending June 9. According to th...

Readmore

Economic Indicators Index Rises for Fifth Straight Month

2 DAYS AGO

The Conference Board Leading Economic Index (LEI) for the U.S. increased 0.3% in May to 127.0, following a 0.2% increase in April, and a 0.4% increase in March.

“The U.S. LEI continued on its upward trend in May, suggesting the economy is likely to remain on, or perhaps even moderately above, its...

Readmore

U.S. Manufacturing Technology Orders Continue Strong Recovery

3 DAYS AGO

Manufacturing technology orders made year-over-year gains in April according to the latest U.S. Manufacturing Technology Orders report from The Association For Manufacturing Technology (AMT). It was also the first month that orders showed gains year to date for 2017.

Monthly orders were up 12.3% compar...

Readmore

WCC and LCC Casting in ASME B16.34

materials_q_and_a_graphicQ: Why do WCC and LCC castings have different maximum allowable temperatures in ASME B16.34?

A: This is a very good question and a commonly discussed topic among materials engineers. Unfortunately, the answer isn't black and white-in fact, the "whys" are not very clear at all. What is clear is that the maximum allowable temperature values in B16.34 can be traced back to Section II Part D of the ASME Boiler and Pressure Vessel (B&PV) Code. However, that code contains no background information or notes to explain why those particular temperature limits were assigned. Because of this, much speculation among materials engineers exists- following along these lines:

The standard carbon steel materials (i.e., those not impact-tested for low-temperature applications, such as A216/SA216 WCC) are most commonly heat treated by normalizing, sometimes followed by tempering. Normalized steels are relatively resistant to microstructural changes at elevated temperatures. Short excursions to temperatures below the lower critical temperature (727° C /1340° F) have little or no detrimental effect on the mechanical properties of the steel. Long-term exposure at temperatures exceeding 425° C / 800° F, however, can cause graphitization, in which the carbide phase transforms to graphite causing loss of strength and toughness. WCC is actually allowed at temperatures up to 538° C / 1000° F, but B16.34 notes (as a borrowed reference from the B&PV Code) that "Upon prolonged exposure to temperatures above 455° C / 900° F, the carbide phase of steel may be converted to graphite. This means it may be permissible, but not recommended for prolonged use above 425° C / 800° F."

On the other hand, low-temperature carbon steel materials (i.e., those that are impact-tested for low-temperature applications, such as A352/SA352 LCC) are usually quenched and tempered, because they are generally tougher than normalized microstructures at the same strength level. When exposed to elevated temperatures, quenched and tempered steels are more susceptible than normalized steels to permanent reduction in strength. This is especially true when exposure temperature begins to approach tempering temperature used when the parts were produced. In addition to losing strength, tempered steels also may experience reduced impact toughness after being exposed to long-term elevated temperatures. General belief is that this is the reason for LCC's reduced maximum allowable temperature limit of 345°C / 650°F in B16.34.

Inconsistencies
Here's where inconsistencies start, however, because:

  • A216 / SA216 allows WCC to be supplied in the quenched and tempered condition if the purchaser v invokes Supplementary Requirement S15. A216 / SA216 does not explicitly require any special marking for quenching and tempering. (Interestingly, though, Supplementary Requirement S15 in A703/SA703, the "general requirements" specification referenced by A216 / SA216, stipulates a "QT" mark when the material is quenched and tempered). B16.34 (and the B&PV Code) do not place any special temperature limits on WCC when it is quenched and tempered.
  • In addition, impact tests are also allowed on a WCC casting at -46°C/-50°F to qualify it for low temperature service. This would then be a full-fledged WCC casting qualified for use down to -46°C/-50°F and minus the explicit 345°C/650°F maximum allowable temperature limit for LCC.
  • Furthermore, the B16.34 maximum allowable temperature for A350/SA350 LF2 forgings is 538°C/1000°F (with the same warning note about graphitization -not to use it above 425°C / 800°F). These forgings are also often quenched and tempered so they are essentially the nearest forged equivalent to LCC castings. If the metallurgical instability issues are the reason for the 345°C / 650°F maximum allowable temperature limit on LCC castings then, it would seem that LF2 forgings should also be limited to 345°C / 650°F.

Drawing Conclusions
Based on the above information, the following conclusions might be drawn:

  • If the reduced maximum allowable temperature for impact-qualified materials (such as LCC) are limited based on loss of toughness after long-term exposure to elevated temperatures, it would seem logical that additional, more consistent controls should be placed on all low-temperature materials (including LF2 forgings). These controls would need to extend to grades traditionally not impact tested, but that might be impact tested to qualify them for low temperature applications (such as an impact-tested WCC). In other words, maximum allowable temperature limit should be based on minimum allowable temperature.
  • If the reduced maximum allowable temperature is limited based on loss of strength from reduced elevated-temperature stability of quenched and tempered steels, it would make sense to list maximum allowable temperature limits for carbon steels as a function of both material grade and also heat treat condition. It would also make sense that quenched and tempered materials be marked in this case as well.
  • If both these concerns are driving the reduced maximum allowable temperature limits, then it would seem that the maximum temperature limits of all carbon steels should be based on both the minimum allowable temperature and the heat treat condition. In any event, it's clear that the ASME codes and standards currently contain a number of inconsistencies regarding lower temperature limits in carbon steels.

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association