07252016Mon
Last updateFri, 22 Jul 2016 4pm

i

Wastewater Treatment

Wastewater Treatment

Society’s desire for a clean envir...

Controlling Our Water Systems, Part II

Controlling Our Water Systems, Part II

To better understand the actuators and c...

Controlling Our Water Systems

Controlling Our Water Systems

Actuators and controls are a critical pr...

Hardfacing Alloys and Processes for Advanced Ultra-Supercritical

Hardfacing Alloys and Processes for Advanced Ultra-Supercritical

Cobalt-based Stellite 6 has been the wor...

The Weekly Report

New Products

  • ja-news-2
  • ja-news-3

Industry Headlines

Advertisement
i

Web Only

Basics of Elastomeric Seal Design

Basics of Elastomeric Seal Design

Wednesday, 20 July 2016  |  Kate Kunkel

Engineers need critical design information when choosing a seal for a particular valve application. This includes:

  • Operating temperature and pressure r...

Readmore

Loading...

Industry Headlines

Pentair Valves & Controls Rolls Out Customer Education Program

3 DAYS AGO

Pentair Valves & Controls has introduced the Pentair University customer education program for past, present and prospective clients and industry leaders in various locations throughout the world. Pentair University’s invitation-only seminars are free to attend. In some regions of the worl...

Readmore

Watson Valve Names Bob White New President

3 DAYS AGO
Watson Valve Names Bob White New President

Watson Valve Services Inc. has named Robert “Bob” White as its new president. The current president, John M. Watson, will remain as the company’s CEO.

Bob has served as executive vice president, and ownership, of Watson Valve Services since its inception in 2002. He has continued to p...

Readmore

Canadian Oil & Gas Earnings Signal Industry Recovery

2 DAYS AGO

The Canadian oil and gas earnings season began yesterday with “signs of an industry recovery as Encana Corp and Precision Drilling Corp outlined plans to boost activity,” Reuters reports .

Analysts say “the uptick in optimism might be mirrored by some U.S. shale companies like Pioneer ...

Readmore

U.S. Lower 48 Sustains $150B in Cuts by Upstream Developers

3 DAYS AGO

Out of the more than $370 billion in global capital expenditure cut by upstream developers across 2016 and 2017, $150 billion was slashed in the U.S. Lower 48 alone — more than three times any other single country. Largely due to responsiveness and flexibility in the unconventional space, spen...

Readmore

STEM Jobs in the U.S. Growing Faster Than Other Fields

3 DAYS AGO

The U.S. Department of Commerce estimates that jobs in STEM will grow 17% by 2018—that’s 55% faster than non-STEM jobs over the next decade. Several reports have linked STEM education to the continued scientific leadership and economic growth of the U.S. However, economic projections also ...

Readmore

IMF Cuts Global Growth Forecast After Brexit Vote

4 DAYS AGO

The International Monetary Fund (IMF) cut its forecasts for global economic growth this year and next as the unexpected U.K. vote to leave the European Union creates a wave of uncertainty amid already-fragile business and consumer confidence.

The global economy is projected to expand 3.1% this year a...

Readmore

WCC and LCC Casting in ASME B16.34

materials_q_and_a_graphicQ: Why do WCC and LCC castings have different maximum allowable temperatures in ASME B16.34?

A: This is a very good question and a commonly discussed topic among materials engineers. Unfortunately, the answer isn't black and white-in fact, the "whys" are not very clear at all. What is clear is that the maximum allowable temperature values in B16.34 can be traced back to Section II Part D of the ASME Boiler and Pressure Vessel (B&PV) Code. However, that code contains no background information or notes to explain why those particular temperature limits were assigned. Because of this, much speculation among materials engineers exists- following along these lines:

The standard carbon steel materials (i.e., those not impact-tested for low-temperature applications, such as A216/SA216 WCC) are most commonly heat treated by normalizing, sometimes followed by tempering. Normalized steels are relatively resistant to microstructural changes at elevated temperatures. Short excursions to temperatures below the lower critical temperature (727° C /1340° F) have little or no detrimental effect on the mechanical properties of the steel. Long-term exposure at temperatures exceeding 425° C / 800° F, however, can cause graphitization, in which the carbide phase transforms to graphite causing loss of strength and toughness. WCC is actually allowed at temperatures up to 538° C / 1000° F, but B16.34 notes (as a borrowed reference from the B&PV Code) that "Upon prolonged exposure to temperatures above 455° C / 900° F, the carbide phase of steel may be converted to graphite. This means it may be permissible, but not recommended for prolonged use above 425° C / 800° F."

On the other hand, low-temperature carbon steel materials (i.e., those that are impact-tested for low-temperature applications, such as A352/SA352 LCC) are usually quenched and tempered, because they are generally tougher than normalized microstructures at the same strength level. When exposed to elevated temperatures, quenched and tempered steels are more susceptible than normalized steels to permanent reduction in strength. This is especially true when exposure temperature begins to approach tempering temperature used when the parts were produced. In addition to losing strength, tempered steels also may experience reduced impact toughness after being exposed to long-term elevated temperatures. General belief is that this is the reason for LCC's reduced maximum allowable temperature limit of 345°C / 650°F in B16.34.

Inconsistencies
Here's where inconsistencies start, however, because:

  • A216 / SA216 allows WCC to be supplied in the quenched and tempered condition if the purchaser v invokes Supplementary Requirement S15. A216 / SA216 does not explicitly require any special marking for quenching and tempering. (Interestingly, though, Supplementary Requirement S15 in A703/SA703, the "general requirements" specification referenced by A216 / SA216, stipulates a "QT" mark when the material is quenched and tempered). B16.34 (and the B&PV Code) do not place any special temperature limits on WCC when it is quenched and tempered.
  • In addition, impact tests are also allowed on a WCC casting at -46°C/-50°F to qualify it for low temperature service. This would then be a full-fledged WCC casting qualified for use down to -46°C/-50°F and minus the explicit 345°C/650°F maximum allowable temperature limit for LCC.
  • Furthermore, the B16.34 maximum allowable temperature for A350/SA350 LF2 forgings is 538°C/1000°F (with the same warning note about graphitization -not to use it above 425°C / 800°F). These forgings are also often quenched and tempered so they are essentially the nearest forged equivalent to LCC castings. If the metallurgical instability issues are the reason for the 345°C / 650°F maximum allowable temperature limit on LCC castings then, it would seem that LF2 forgings should also be limited to 345°C / 650°F.

Drawing Conclusions
Based on the above information, the following conclusions might be drawn:

  • If the reduced maximum allowable temperature for impact-qualified materials (such as LCC) are limited based on loss of toughness after long-term exposure to elevated temperatures, it would seem logical that additional, more consistent controls should be placed on all low-temperature materials (including LF2 forgings). These controls would need to extend to grades traditionally not impact tested, but that might be impact tested to qualify them for low temperature applications (such as an impact-tested WCC). In other words, maximum allowable temperature limit should be based on minimum allowable temperature.
  • If the reduced maximum allowable temperature is limited based on loss of strength from reduced elevated-temperature stability of quenched and tempered steels, it would make sense to list maximum allowable temperature limits for carbon steels as a function of both material grade and also heat treat condition. It would also make sense that quenched and tempered materials be marked in this case as well.
  • If both these concerns are driving the reduced maximum allowable temperature limits, then it would seem that the maximum temperature limits of all carbon steels should be based on both the minimum allowable temperature and the heat treat condition. In any event, it's clear that the ASME codes and standards currently contain a number of inconsistencies regarding lower temperature limits in carbon steels.

  • Latest Post

  • Popular

  • Links

  • Events

Advertisement

Looking for a career in the Valve Industry?

ValveCareers Horiz

To learn more, watch the videos below or visit ValveCareers.com a special initiative of the Valve Manufacturers Association