Valve Magazine

Mon07062015

Last updateFri, 03 Jul 2015 10am

Designing for Safety:  Failure Modes on Gate Valves

Designing for Safety: Failure Modes on Gate Valves

For over 100 years, preventing catastrophic failur...

Advanced Computational Fluid Dynamics Analysis in Control Valves

Advanced Computational Fluid Dynamics Analysis in Control Valves

CFD is used in early field issue resolution where ...

Reclaiming Water from Oil Production

Reclaiming Water from Oil Production

One of the biggest objections to hydraulic fractur...

VALVE Magazine Print & Digital

Subscribe SPR15Read the latest digital edition

Subscribe to the digital edition

Subscribe to the print edition

Subscribe to the biweekly VALVE eNews

BUYERS GUIDE 300x80

New Products

Industry Headlines

U.S. Manufacturing Expands at Fastest Rate in Five Months

2 DAYS AGO  |  Chris Guy

Manufacturing expanded in June as the Institute for Supply Management’s (ISM) PMI registered 53.5%, an increase of 0.7% over the May reading of 52.8%,...

Read more

Loading...
Advertisement
Advertisement

Multi-colored Stain on Valves

materials_q_and_a_graphicQ: I am handling high purity-water and keep getting a multi-colored stain on my valves and other equipment. What is this, and how can I prevent it?

A: You are describing a phenomenon called "rouging," a term that pertains to the multi-colored stain you are seeing. Rouging is a problem that is seen primarily in high-purity water applications or steam. Though more commonly associated with the pharmaceutical and electronics industries, it can occur most anywhere. At the lower temperatures rouge is red or yellowish in appearance, but in high-temperature steam it will be dark gray or black. The FDA has not made any formal opinion about rouging, but pharmaceutical companies are concerned about contamination of their products so they go to great lengths to prevent it and to clean their systems when it occurs-incurring undesired downtime and expense.

The mechanism of rouging is still not fully understood and as a result there are some myths and misconceptions about what it is and how to prevent it. Essentially, rouge is a form of rust, i.e., iron oxide, but different than the heavy rust seen when stainless steel is not cleaned properly after heat treatment or welding. While normal rust is a result of improper cleaning during manufacture, rouge is a much thinner layer that occurs when perfectly cleaned stainless steel reacts with high-purity water environments. Rouge seems to be more prevalent at temperatures in excess or 60° C.

We know that stainless steels achieve their corrosion resistance by developing a very thin microscopic chromium oxide layer. The general consensus about rouging is that certain services, such as high purity water with very low oxygen content, dissolve this protective layer and allow the stainless steel to resume corroding. This corrosion is then responsible for the staining we call rouging. These stains have been analyzed as being various types of iron oxide as well as containing traces of chromium and nickel.

While mainly an aesthetics problem, most people still want to prevent rouge in their systems. One commonly held belief is that the ferrite phase in cast stainless steels or welds causes rouging, and purchasers of valves and other equipment frequently impose strict limits on the ferrite content of cast stainless steels. Since wrought stainless steels with no ferrite also experience rouging, it doesn't appear that ferrite is the culprit.

A study conducted by AvestaPolarit1, found that the water's gas content and a metal's surface finish were influential for rouging. Basically, water with high oxygen and low carbon dioxide content was less likely to cause rouging as were electro-polished surfaces of the metal components. This study also found no significant correlation for the different alloy grades, including duplex stainless steels with their high ferrite content.

Since most people find rouge objectionable in their systems, much attention has been given to its removal. Various acids and chelates are used to clean systems of rouge, but these can leave behind their own contaminates or films. In addition, if acid exposure is not controlled closely, the acid can etch the metal surfaces thus destroying the expensive electro-polished surfaces. Therefore, the most effective way to prevent rouge is by somehow introducing sufficient oxygen to the system, which helps maintain the protective chromium oxide layer.

  • Latest

  • Popular

  • Links

  • Events

 

Valve Magazine Digital Edition

15 SPR CVRInside the Spring 2015 issue…

• Heavy Oil
• 3D Printing Gains Momentum
• Restoring Power After Sandy
• What is a Surplus Valve?

CLICK HERE TO REQUEST YOUR
DIGITAL EDITION PREVIEW EMAIL